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Introduction
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Product

▪ A scalable storage cluster technology and optimization layer for clouds 
▪ Virt. of multiple cloud storage services behind NVMe-oF/tcp and a CSI driver  
▪ Storage for any host or container with NVMe-oF/tcp initiators  
▪ Tight integration into Kubernetes ecosystem 
▪ Fully containerized solution  
▪ Storage plane is entirely built on top of spdk 
▪ Control plane provides CLI, API, Deployment, Monitoring, Alerting, Log Management, Repair 

and IO Statistics Services 
▪ Designed to be cloud-agnostic, but the current releases focus on AWS
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Control Path
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Data Path
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Concepts
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data services container: data path
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data services: Distributed placement 
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data services container: device-level placement

▪ Virtual block device, which manages a 
particular local NVMe namespace 

▪ It organizes the linear address space into 
segments and manages pools of segments 
assigned to particular logical devices (vuids) 

▪ It works single threaded, but actual IO can be 
served by multiple threads used to serve 
multiple queue pairs in parallel



10

meta-data journal

▪ Stores information per segment (compacted - in mem 
and on disk) and journals each IO request (on disk)  

▪ Regular compaction to update per-segment data from 
journal 

▪ block-level allocation map 
▪ Placement map 
▪ Mapping of data on secondary storage  
▪ Per segment “last-touched” sequencing
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meta data journal: further design decisions

▪ Replicated across 3 different nodes (6 copies) 
▪ Replicas kept in synch or synchronized after unavailability  
▪ Compaction of meta data: io request-level journal is processed and compacted into on-disk 

meta-data segments as a background task 
▪ Current write amplification to data is about 25% only
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HA volumes

▪ A logical volume  is instantiated on 3 nodes 
and exposed to the fabric via an identical 
NVMe Qualified Name (NQN) 

▪ ANA Optimized Namespace on primary 
▪ NVMe/TCP initiator multipathing function 

chooses the first path per default.

▪ In case the first path is down, IO is sent to a secondary node. The placement bdev 
initiates the fail-over (leadership acquisition). 

▪ For this purpose, it needs to update the logical volume in-memory data structures from 
the underlying storage and journal replica 

▪ Takeover takes a few milliseconds, after which the new leader will serve the incoming 
IO.
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Asynchronous replication to S3

▪ Amazon S3 is about 5 times cheaper than aws NVMe block storage (EBS) 
▪ It is replicated across Availability Zones (AZs)  
▪ It can be write- and deletion-protected for a defined retention period. 
▪ By using parallelism, it is possible to write and read sequentially at relatively high throughput 

rates, but access latency is very high and IOPS are very expensive. 
▪ Simplyblock replicates storage writes asynchronously to S3 in the form of a WAL. It is written 

entirely sequentially in batches of fixed-size S3 objects (WAL segments). 
▪ A compaction mechanism is used to regularly remove stale blocks and re-organize 

compacted data into new objects with the help of the md journal. 
▪ This allows implementation of Disaster Recovery and recovery from ransomware attacks 

with near-zero RPO. It also serves as a basis for our storage tiering.
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QoS

▪ When the total IOPS and throughput load on a cluster increases, so does the queue depth 
and the average completion time of IO on each of the devices.  

▪ The load is equally distributed across all devices and the observed increase in access 
latency is similar.  

▪ To support logical volumes with different performance requirements on the same cluster, a 
QoS component was introduced. 

▪ Simplyblock supports 4 priority classes. A class can be chosen on the logical volume level. 
In addition, internally, all md writes take place at the highest priority class. 

▪ A virtual QoS device on top of each physical NVMe device or NVMe partition takes care that 
the queue depth to the physical device is limited. While highest priority IO is always allowed, 
IO at a lower priority is held back (queued separately) until the amount of IO in flight (qd) 
decreases sufficiently. 
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Cluster (Re-)Balancing

▪ Auto-Rebalancing triggered by 3 events: device (node) restarted after temp. outage, device (node) 
persistent failure, device (node) added to cluster 

▪ All re-distributions of data are serialized on a per-device and per logical volume basis, but are fully 
parallelized between logical volumes.  

▪ Each logical volume in the cluster is responsible for “updating” the data placement (re-distribution) 
in case of such an event.  

▪ All affected <segment, column> pairs (or partial data within) are first identified  
▪ Then data is re-distributed according to the most current version of the cluster map and node / 

device statuses. 
▪ The redistribution takes place within the IO functions of the placement bdevs 
▪ Each column, including both data and parity, is handled individually and parity re-calculation is 

generally not required (exception: re-distribution of data in case of failed device requires rebuild of 
some of the data).
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Performance & Scaleability  
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Baseline Performance - Measurements

▪ Software performance based on 3 indicators: net IO access latency per qd (without disk 
and network), total vCPU consumption per K-IOPS effective, Read/Write-Amplification  

▪ System performance based on defined storage instance types with dedicated nw bandwidth: 
total io access latency per IO load, total IOPS, total throughput 

▪ AWS: On storage node instances with dedicated network bw, there are no noisy-neighbour 
effects and performance can be measured in a repeatable and reliable manner to assign 
SLAs for particular IO patterns 

▪ SLAs are harder to achieve for arbitrary, variable patterns, because nitro disk performance is 
very sensitive to IO patterns. 
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Basic Findings

▪ Software 
▪ read amplification: 1 
▪ write amplification (worst-case, 4KiB random writes): writes: k + 0.25, reads: 0 (n=1), 1 (n=2), 2 (n>2) 
▪ approx. cpu consumption / K-IOPS (depending on io pattern): 0.05 cpu cores (2.1 Ghz arm) 
▪ io access latency (spdk+simplyblock path): 40 us 

▪ System 
▪ disaggregated storage cluster with 3 nodes of type i3en.2xlarge, single AZ 
▪ approx. 1.200.000 IOPS on read (4 KiB random) 
▪ approx. 600.000 IOPS on write (4 KiB random) 
▪ max r/w bandwidth 8 GB/s  
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Spdk: Scaling on AWS (single node)

▪ AWS offers a broad range of Intel and Graviton instances with local instance storage up to 
bare-metal instances with 96 vCPUs and 60TB of local instance storage. 

▪ Spdk is based on several principles, which make it highly scalable: user space polling mode 
driver, zero-copy architecture, lockless, asynchronous messaging btw. threads 

▪ Tests show that the overall system performance of the NVMe/TCP target on AWS does not 
scale entirely linearly with the amount of vCPUs and disks added, while shared resources 
(L3, RAM, PCI) are not fully loaded 

▪ Preferable to work with more and smaller nodes  
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Simplyblock: Scaling on AWS (single node)

▪ Simplyblock threads (in addition to spdk) : (1) EC + Distributed Data Placement - one to many 
(2) single device dynamic data placement (main) - one per physical disk (3) single device 
dynamic data placement (io workers) - up to three per physical disk (3) journal manager - 
usually one per node (4) tiering manager - one per node (5) replication - one per node 

▪ All threads principally avoid cross-thread dependencies and each thread can work nearly 
entirely independently (theoretically) 

▪ The highest load is on (1). While there is no pressure on shared resources and no 
dependencies btw. threads in this group, we still observe an optimal amount of threads of that 
type per node - after that threshold, the cpu consumption / K-IOPS starts to rise significantly 
▪ The reason for this behaviour is not fully understood and requires further research 
▪ Therefore smaller nodes are preferable
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Simplyblock: Scaling on AWS (cluster / multiple nodes)

▪ Each node in the cluster delivers about 75% of the performance of a single node deployment  
▪ This decrease is caused by networking / coordination btw. remote nvme-oF and local IO 

requests to the same disks 
▪ Vertical scalbility of cluster by adding node is extremely good - nearly linear 
▪ Maximum number of nvme-oF initiators per node - about 1.000 
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spdk on AWS: Findings
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qp saturation

▪ Spdk is built on the assumption that a physical NVMe device can be saturated (IOPS, 
throughput) with a single qp. 

▪ When using the spdk NVMe-oF target, a single qp is used by the kernel initiator per client 
thread. This qp maps to an spdk target qp, and then, down in the block device stack, to a 
single qp on the target NVMe device. 

▪ But AWS local instance storage (Nitro NVMe) requires 2-3 queue pairs to reach full 
saturation. 

▪ For this reason, it is not simply possible to saturate a NVMe device with a single-threaded 
client IO using spdk (on AWS).
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# of qps

▪ NVMe base specification defines that devices may support up to 65K queue pairs. 
▪ As a general rule, spdk requires one qp per core in the core mask (however, this depends on 

the block device configuration and cpu masks used). 
▪ While AWS provides sufficient queue pairs for local instance storage (depending on the type 

and size of disk - typically around 64), this is not the case for EBS volumes. For example, a 
single gp3 volume only has 2 queue pairs. 

▪ This can cause issues with spdk terminating due to insufficient queue pairs could be 
allocated. 



25

Write Atomicity

▪ The NVMe identify controller / namespace reports that AWS Nitro NVMe devices support 
only 512 bytes blocks and single block write atomicity. 

▪ However, the write and read performance of those NVMe devices is optimized / throttled to 
around 4K block size (max. IOPS on 4K, same as on 512 bytes). 

▪ Also, the spdk logical volume layer (logical volume virtualization, snapshots, copy-on-write 
clones), require 4K write atomicity. 

▪ Good news: AWS supports a “torn write protection” feature for both instance storage, as well 
as block storage. It provides 4K (in some cases up to 16K) write atomicity.  
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Multipathing

▪ NVMe base specification defines multipathing options with support for both active/passive 
(via asynchronous Namespace Access aka ANA) and active/active (round-robin). 

▪ NVMe-oF multipathing is available in Linux kernel since version 5. Not to confuse with the 
generic mpio device! 

▪ On Amazon Linux 2 (kernel: 5.10), the NVMe-oF multipathing feature is not enabled and the 
pending issue is not yet fixed. It works on Amazon Linux 2023 though.
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CPU Architecture

▪ Spdk runs on both Graviton and x86 instances. 
▪ However, a vCPU on AWS is usually a thread on x86 and a core on graviton. 
▪ E.g. on a system with 16 vCPUs, the first 8 and the second 8 correspond to thread pairs per 

core, e.g. 0x1010 defines the first core. 
▪ This can cause troubles, if an spdk process or container runs in parallel with other work 

loads. 
▪ It is important to set the spdk core mask accordingly to avoid noisy neighbours.  
▪ For example, to allocate 4 vCPUs on an instance with 16 vCPUs, use (binary)  
▪ 01100000 01100000 (always leave vCPU 0 for system).



28

Thank you  
 

michael@simplyblock.io


